Jumat, 28 Oktober 2016






Sejarah Perkembangan Atom
          Penemu atom dan inti atom telah berkembang di setiap peradaban sejak manusia mengenal tulisan atau yang lebih dikenal sebagai zaman permulaan sejarah. Manusia telah menyadari bahwa disamping alam makrokosmos, terdapat pula alam mikrokosmos yang berukuran sangat kecil.
Penemu Atom
Struktur Atom





Penemu atom  adalah apa yang akan terjadi apabila kita terus membelah suatu benda atau materi. Adakah sebuah partikel dasar (elementer) yang berukuran paling kecil dimana partikel atau materi lain pun tersusun atas partikel elementer tersebut. Dari banyak literatur yang dapat kita peroleh sekarang ini, yang paling menarik adalah perkembangan teori tentang atom sebagai sebuah partikel terkecil dari suatu unsur.

          Ada beberapa ahli ilmu pengetahuan dan filsafat. Pengembangan konsep atom-atom secara ilmiah dimulai oleh John Dalton, kemudian dilanjutkan oleh Thomson, Rutherford dan disempurnakan oleh Bohr.

Sejarah Perkembangan Atom dari Beberapa Ilmuan Terkemuka setelah Para Penemu Atom



       1. Model Atom Dalton
Pada tahun 1803, John Dalton mengemukakan mengemukakan pendapatnya tentang atom. Teori atom Dalton didasarkan pada dua hukum, yaitu hukum kekekalan massa (hukum Lavoisier) dan hukum susunan tetap (hukum prouts). Lavosier mennyatakan bahwa "Massa total zat-zat sebelum reaksi akan selalu sama dengan massa total zat-zat hasil reaksi". Sedangkan Prouts menyatakan bahwa "Perbandingan massa unsur-unsur dalam suatu senyawa selalu tetap".
Hipotesa Dalton digambarkan dengan model atom sebagai bola pejal seperti pada tolak peluru. Seperti gambar berikut ini:


Kelebihan Model Atom Dalton
Mulai membangkitkan minat terhadap penelitian mengenai model atom

Kelemahan Model Atom Dalton
Teori atom Dalton tidak dapat menerangkan suatu larutan dapat menghantarkan arus listrik. listrik adalah elektron yang bergerak. Berarti ada partikel lain yang dapat menghantarkan arus listrik.
  
2. Model Atom Thomson


        Berdasarkan penemuan tabung katode yang lebih baik oleh William Crookers, maka J.J. Thomson meneliti lebih lanjut tentang sinar katode dan dapat dipastikan bahwa sinar katode merupakan partikel, sebab dapat memutar baling-baling yang diletakkan diantara katode dan anode. Teori Atom Thomson. Yang menyatakan bahwa:
"Atom merupakan bola pejal yang bermuatan positif dan didalamya tersebar muatan negatif elektron"
Model atomini dapat digambarkan sebagai jambu biji yang sudah dikelupas kulitnya. biji jambu menggambarkan elektron yang tersebar marata dalam bola daging jambu yang pejal, yang pada model atom Thomson dianalogikan sebagai bola positif yang pejal. Model atom Thomson dapat digambarkan sebagai berikut:



3. Model Atom Rutherford

      Rutherford bersama dua orang muridnya (Hans Geigerdan Erners Masreden)melakukan percobaan yang dikenal dengan hamburan sinar alfa (λ) terhadap lempeng tipis emas. Sebelumya telah ditemukan adanya partikel alfa, yaitu partikel yang bermuatan positif dan bergerak lurus, berdaya tembus besar sehingga dapat menembus lembaran tipis kertas. Percobaan tersebut sebenarnya bertujuan untuk menguji pendapat Thomson, yakni apakah atom itu betul-betul merupakan bola pejal yang positif yang bila dikenai partikel alfa akan dipantulkan atau dibelokkan. Dari pengamatan mereka, didapatkan fakta bahwa apabila partikel alfa ditembakkan pada lempeng emas yang sangat tipis, maka sebagian besar partikel alfa diteruskan (ada penyimpangan sudut kurang dari 1°), tetapi dari pengamatan Marsden diperoleh fakta bahwa satu diantara 20.000 partikel alfa akan membelok sudut 90° bahkan lebih.
Berdasarkan fakta bahwa 1 dari 20.000 partikel alfa akan dibelokkan. Bila perbandingan 1:20.000 merupakan perbandingan diameter, maka didapatkan ukuran inti atom kira-kira 10.000 lebih kecil daripada ukuran atom keseluruhan.
Model atom Rutherford dapat digambarkan sebagai beriukut:


 4. Model Atom Bohr
          Pada tahun 1913, pakar fisika Denmark bernama Neils Bohr memperbaiki kegagalan atom Rutherford melalui percobaannya tentang spektrum atom hidrogen. Percobaannya ini berhasil memberikan gambaran keadaan elektron dalam menempati daerah disekitar inti atom. Penjelasan Bohr tentang atom hidrogen melibatkan gabungan antara teori klasik dari Rutherford dan teori kuantum dari Planck, diungkapkan dengan empat postulat, sebagai berikut:
1.      Hanya ada seperangkat orbit tertentu yang diperbolehkan bagi satu elektron dalam atom hidrogen. Orbit ini dikenal sebagai keadaan gerak stasioner (menetap) elektron dan merupakan lintasan melingkar disekeliling inti.
2.      Selama elektron berada dalam lintasan stasioner, energi elektron tetap sehingga tidak ada energi dalam bentuk radiasi yang dipancarkan maupun diserap.
3.      Elektron hanya dapat berpindah dari satu lintasan stasioner ke lintasan stasioner lain. Pada peralihan ini, sejumlah energi tertentu terlibat, besarnya sesuai dengan persamaan planck, ΔE = hv.
4.      Lintasan stasioner yang dibolehkan memilki besaran dengan sifat-sifat tertentu, terutama sifat yang disebut momentum sudut. Besarnya momentum sudut merupakan kelipatan dari h/2∏ atau nh/2∏, dengan n adalah bilangan bulat dan h tetapan planck.
Menurut model atom bohr, elektron-elektron mengelilingi inti pada lintasan-lintasan tertentu yang disebut kulit elektron atau tingkat energi. Tingkat energi paling rendah adalah kulit elektron yang terletak paling dalam, semakin keluar semakin besar nomor kulitnya dan semakin tinggi tingkat energinya.

  TENAGA NUKLIR



Nuklir berasal dari bahasa latin yang merupakan nucleus yang berarti inti. Yang di maksud di sini adalah, dalam reaksi nuklir melibatkan inti atom dimana inti atom tersusun atas neutron dan  proton, tidak seperti reaksi kimia yang hanya melibatkan electron saja. Reaksi nuklir adalah sebuah proses dimana dua nukleus atau partikel nuklir bertubrukan, untuk memproduksi hasil yang berbeda dari produk awal.




Plutonium-239 dan Uranium-235 yang digunakan merupakan isotop, yaitu atom yang memiliki jumlah proton sama tetapi jumlah neutronnya berbeda. Maka Plutonium memiliki nomor atom 239. Berbeda dengan yang ditampilkan table periodic unsure, bahwa Plutonioum memiliki nomor atom 242, merupakan nuklida, memiliki jumlah proton dan neurton yang sama dalam satu inti.

Dalam reaksi nuklir, terdapat reactor sebagai tempat untuk terjadinya reaksi nuklir, penyimpanan dan penanganan laangsung terhadap bahan bakar nuklir. Di dalam reactor nuklir itu sendiri tersusun atas 6 komponen dasar, yang meliputi:

1.       Bahan bakar nuklir
2.       Moderator
3.       Reflektor
4.       Pendingin
5.       Batang kendali
6.       Perisai

Bahan bakar nuklir berupa Uranium (U-235) yang di tambang dari alam. Energi 20 gr uranium ekivalen dengan 2,25 ton batubara. Penambangan dan Penggilingan Uranium ditambang melalui teknik terbuka (open cut) maupun teknik terowongan (underground) tergantung pada kedalaman batuan uranium yang diketemukan. Biji uranium hasil penambangan selanjutnya dikirim ke pabrik pengolah bijih yang umumnya berada di dekat tambang.  Di pabrik ini, bijih uranium dihancurkan secara mekanik, dan kemudian uranium dipisahkan dari mineral lainnya melalui proses kimia menggunakan larutan asam sulfat. Hasil akhir dari proses ini berupa konsentrat uranium oksida (U3O8) yang sering disebut kue kuning atau “Yellow Cake”.

Fabrikasi Bahan Bakar, diawali dengan proses konversi UF6yang telah diperkaya (keluaran pabrik pengayaan) menjadi serbuk uranium dioksida (UO2) yang kemudian dibentuk menjadi pil-pil (pelet) silinder melalui pengepresan dan diteruskan dengan pemanggangan dalam suasana gas hidrogen pada temperatur tinggi (1700oC) hingga membetuk pelet UO2berderajat keramik yang rapat dan kuat. Pelet-pelet UO2yang memenuhi persyaratan kualitas kemudian dimasukkan ke dalam sebuah selongsong dari bahan paduan zirconium (zircalloy).Setelah kedua ujung selongsong ditutup dan dilas, batang bahan bakar (fuel rod) disusun membentuk suatu perangkat bakar (fuel assembly).Setelah proses fabrikasi, perangkat bakar nuklir di masukkan ke dalam teras reaktor. Susunan perangkat bakar (fuel assembly) inilah yang membentuk struktur inti atau teras reaktor (reactor core).


Dari penjelasan di atas tentunya kita lebih mengenal tentang nuklir. Nuklir itu sendiri di Indonesia dimanfaatkan untuk PLTN dengan reactor air tekanan (RAT). Pada PLTN jenis RAT, energy kalor yang begitu besar dari reaksi fisi (eksoterm) akan digunakan untuk memanaskan air, dan menghasilkan uap bertekanan tinggi yang digunakan untuk memutar turbin. Selanjutnya uap akan didinginkan kembali oleh air laut yang di pompa ke system condenser. Setelah uap didinginkan dan  menjadi air, maka air tersebut akan dipompa ke reactor untuk di panaskan kembali. Proses tersebut terus berlangsung secara berulang-ulang.